A novel culture system shows that stem cells can be grown in 3D and under physiologic pulsatile conditions for tissue engineering of vascular grafts.
نویسندگان
چکیده
BACKGROUND Currently available vascular grafts have been limited by variable patency rates, material availability, and immunological rejection. The creation of a tissue-engineered vascular graft (TEVG) from autologous stem cells would potentially overcome these limitations. As a first step in creating a completely autologous TEVG, our objective was to develop a novel system for culturing undifferentiated mouse embryonic stem cells (mESC) in a three-dimensional (3D) configuration and under physiological pulsatile flow and pressure conditions. MATERIALS AND METHODS A bioreactor was created to provide pulsatile conditions to a specially modified four-well Labtek Chamber-Slide culture system. Undifferentiated mESC were either suspended in a 3D Matrigel matrix or suspended only in cell-culture media within the culture system. Pulsatile conditions were applied to the suspended cells and visualized by video microscopy. RESULTS Undifferentiated mESC were successfully embedded in a 3D Matrigel matrix and could withstand physiological pulsatile conditions. Video microscopy demonstrated that the mESC in the 3D matrix were constrained to the wells of the culture system, moved in unison with the applied flows, and were not washed downstream; this was in contrast to the mESC suspended in media alone. CONCLUSIONS Undifferentiated mESC can be grown in 3D and under pulsatile conditions. We will use these results to study the effects of long-term pulsatile conditions on the differentiation of mESC into endothelial cells, smooth muscle cells, and fibroblast cells with the long-term goal of creating a completely autologous TEVG.
منابع مشابه
The Effect of Rosmarinic Acid in Neural Differentiation of Wartons Jelly-derived Mesenchymal Stem Cells in Two Dimensional and Three Dimensional Cultures using Chitosan-based Hydrogel
Numerous studies have shown the positive effects of rosmarinic acid on the nervous system. Rosmarinic acid as a herbal compound with anti-inflammatory effects can prevent the destructive effect of inflammation on the nervous system. Furthermore, various studies have emphasized the advantages of three dimensional (3D) culture over the two dimensional (2D) culture of cells. In this study, thermos...
متن کاملBone Tissue Engineering: a Mini-Review
Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...
متن کاملRegulation of gene expression in tissue engineering, differentiation and bone regeneration of ossifying stem cells
Cells that make up the bodychr('39')s tissues are usually three-dimensional architecture, the threedimensional culture system enables cells to create natural and in vivo interactions which is an ideal environment for 3D (Three-dimensional) cell growth and issues such as exchange of similar food exchanges inside Capillary in living tissue. In tissue engineering discussion, cell scaffolding is hi...
متن کاملI-5: Multicellular Human Testicular Organoid: A Novel 3D In Vitro Germ Cell and Testicular Toxicity Model
Background Background: Mammalian spermatogenesis is regulated through paracrine and endocrine activity, specific cell signaling, and local control mechanisms. These highly specific signaling interactions are effectively absent upon placing testicular cells into two-dimensional primary culture. The specific changes that occur between key cell types and involved spermatogenesis signaling pathways...
متن کاملComparison of the Expression of Hepatic Genes by Human Wharton's Jelly Mesenchymal Stem Cells Cultured in 2D and 3D Collagen Culture Systems
Background: Human Wharton’s jelly mesenchymal stem cells (HWJMSCs) express liver-specific markers such as albumin, alpha-fetoprotein, cytokeratin-19, cytokeratin-18, and glucose-6-phosphatase. Therefore, they can be considered as a good source for cell replacement therapy for liver diseases. This study aimed to evaluate the effects of various culture systems on the hepatocyte-specific gene expr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of surgical research
دوره 132 2 شماره
صفحات -
تاریخ انتشار 2006